

Jet Propulsion Laboratory California Institute of Technology

CGI HOWFSC Model Validation in TVAC

Hanying Zhou, and the HOWFSC team

Jet Propulsion Laboratory California Institute of Technology

Pasadena, CA 91109

August 26 – 27, 2024

Copyright 2024 California Institute of Technology. Government sponsorship acknowledged

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
• CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

Jet Propulsion Laboratory California Institute of Technology CGI HOWFSC (Performance) Model – TVAC Config

- Part of CGI diffraction modeling: provide credible raw contrast prediction (TB, CGI ground & IOC)
- Provide SE support for engineering decision making, risk assessment, etc., throughout the CGI development cycles
- Use the *same/similar CGI HOWFSC control algorithm/model*, procedure, regularization strategy, constraints, etc.

(Modified for TVAC)

- WFSC Model: standard PWP +EFC
 - PWP: use as-built detector model to generate images over finite BW using truth model, and E field estimation w/ control model
 - EFC: Jacobian (by *control model*) relinearization as needed; *truth model* for contrast scoring
- **Detector Model**:
 - As-built detector parameter settings
 - EETC calculator to determine camera operating parameters w/ CVS light source spectrum

AN CORONAGRAPH

Jet Propulsion Laboratory California Institute of Technology TVAC HOWFSC Model Validation – Raw Contrast

ROMAN CORONAGRAPH

First opportunity for HOWFSC model's validation <u>w/CGI</u>

<u>1. As-built pre-test prediction</u> (w/ key TVAC calib info of components & alignments):

- Good agreement on mean raw coherent contrast: <25% err (|p/m-1|)
- Total number of iterations in the same ballpark of x10s (first time!)
 - Starting from HLC dsgn DM solution a success!

Note:

- Beta bump not in sync, as <u>model was run before</u> <u>the TVAC test</u>, while during TVAC they were adjusted on the fly by (perceived) need
- Recommendations from model greatly helped TVAC HOWFSC execution (esp. the 1st run)

(Model validation not required or planned)

2. Monte Carlo prediction (w/ CGI Req. as uncertainty ranges, no flight unit calibrations):

 TVAC raw coherent contrast right at the predicted max (or ~14% over of 95th%) Unexpected over-the-requirement imperfections related to DMs (dead actuators, gain cross coupling, relative grid offsets) are among the main drivers for the TVAC contrast to max of predicted range

Raw coherent contrast (ppb), 6-9 λ /D

TVAC	1. As-built	2. MC pred (MUF =2)
mears'd	pre-test pred.	Mean; 95 th %; max
9.8	7.6	6.1; 8.4; 9.8

August 26-27, 2024 CGI Test Results Info Session

Jet Propulsion Laboratory California Institute of Technology TVAC HOWFSC Model Validation - Zernike Sensitivity

- Z4~Z11, from Zernike internal step input test (via DM1, Test #3, in Joon's slides)
 - Good model vs measurement agreement (except Z5)
- Separate Z2~Z4 sensitivities test data taken, but not yet analyzed

% Zs	<i>p/m</i> -1	<i>m/p</i> -1
Z4	52	34
Z5	55.7	125.9
Z6	7	6.5
Z7	10	9.1
Z8	0.5	0.5
Z9	37.6	27.3
Z10	14.7	12.8
Z11	10	9.2
mean	23	28

August 26-27, 2024 CGI Test Results Info Session

ROMAN CORONAGRAPH

TVAC Anomaly: CFAM Stray Light Diffraction Modeling

- Toward the end of TV-30, an anomaly discovered:
 - a. Incoherent light tails in some of DH subband images
 - b. Crescent feature in pupil images taken w/ PIL mode, FS, & DH solution
- Preliminary analysis (Brian K, Gary K.) points to FS diffraction from out-ofband spectrum through a gap around CFAM

b. PIL image w/ field stop

Incoherent light tail

Crescent light leakage

- C. CFAM Top view Expanded Footprint Geometric footprint Out of band light w/ field stop diffraction d. Effective gap as used in model, looking from propagation axis; white circle indicates nominal CFAM filter diam
- Modeling to confirm, assess the impact in orbit & effectiveness of mitigation, & <u>exercise as a model verification/validation test:</u>
 - Based on the best understanding of the CFAM gap geometry (c. & d.)
 - Run beam propagation twice, and then added incoherently:
 - 1. wavelengths w/n CFAM BW pass through the nominal CFAM aperture
 - 2. wavelengths outside CFAM BW pass through the gap only

CFAM = color filter alignment mechanism

Aboratory f Technology Model Verification of TVAC Stray Light – PIL Images

Jet Propulsion Laboratory California Institute of Technology Model Verification of TVAC Stray Light - PIL Images

Model Verification of TVAC Stray Light – DH Images

August 26-27, 2024 CGI Test Results Info Session

August 26-27, 2024 CGI Test Results Info Session

Summary

- TVAC: first opportunity for HOWFSC performance model's validation <u>w/CGI</u>
 - Calibration based as-built pre-test prediction *agrees well* w/ the actual TVAC performance
 - <u>Extend our track record on good model validation result of as-built coronagraph system:</u> **Raw coherent contrast, contrast convergence, and key sensitivities**
 - Uncertainty based Monte Carlo *predicted max goes w/ the actual TVAC performance*
 - Under the circumstance of (unexpected) unmet requirements
 - Model verified a major TVAC performance anomaly (CFAM stray light)