

Jet Propulsion Laboratory California Institute of Technology

CGI Observing Scenario 11 Modeling Results

John Krist

Jet Propulsion Laboratory California Institute of Technology

Pasadena, CA 91109

August 26 – 27, 2024

Copyright 2024 California Institute of Technology. Government sponsorship acknowledged

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
• CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

RESEARCH PAPER

End-to-end numerical modeling of the Roman Space Telescope coronagraph

John E. Krist,^{a,*} John B. Steeves,^{a,b} Brandon D. Dube,^a A J Eldorado Riggs,^a Brian D. Kern,^a David S. Marx,^a Eric J. Cady,^a Hanying Zhou,^a Ilya Y. Poberezhskiy,^a Caleb W. Baker,^a James P. McGuire,^a Bijan Nematic,^c Gary M. Kuan,^a Bertrand Mennesson,^a John T. Trauger,^a Navtej S. Saini,^a,^a and Sergi Hildebrandt Rafels,^a ^aCalifornia Institute of Technology, Jet Propulsion Laboratory, Pasadena, California, United States

^bAmazon, Project Kuiper, Northridge, California, United States ^cTellus1 Scientific, LLC, Madison, Alabama, United States

JATIS 9(4) (2023)

The Need for Time Series Modeling

- Evaluate post-processing techniques (e.g., RDI, ADI, KLIP)
 - These will be used to recover embedded exoplanets and circumstellar disks
- Verify the CGI error budget
 - Predicts dark hole changes analytically using model-derived sensitivities to allocate performance requirements

Time Series Models

- Diffraction model (including LOWFS)
 - Computes the dark hole by propagating the wavefront through the system model using Fourier-based algorithms
- STOP model
 - Structural, Thermal, and Optical Performance
 - Finite-element modeling of thermally-induced structural deformations
 - Ray tracing to derive resulting wavefront changes
- Dynamics model
 - Structural perturbations induced by reaction wheel vibrations
 - Primary effect is rapid pointing error (jitter)

The Dark Hole

The initial dark hole:

The dark hole immediately after running high-order wavefront control

Roman+CGI Unfolded Layout

Broadband image = multiple monochromatic images x 4 polarization components

CGI Wavefront Control

The same wavefront control algorithms are used in the models, testbeds, and on-orbit

Observing Scenario 11 Timeline

OS11 Orbital Parameters

	А	В	С	D	E	F	G	Н	1	J	K	L	Μ	Ν	(
1	Times begin at 2	2026-05-21 00	:00:00 UTC	, sun mov	es as seen	from Earth	, locations	are accura	te at t in ea	ch line					
2	All positions are	e expressed as s	equential	(yaw, pitcl	n, roll) righ	t-handed r	otations, w	ith initial c	rientation	aligning x	(telescope	boresight)	toward the	e north eclipt	ic pole
3				Attitude Angles			Thermal Desktop Vectors								
			Time	Yaw-0 _z	Pitch- θ_v										
4	Mode	Pointing	(hrs)	(°)	(°)	Roll- 0 , (°)	t [s]	x sun	y sun	z sun	x planet	y planet	z planet	r/r planet	
5	Settle	HLS	0.00	125.5	-4.6	0.0	0	0.08	0.00	1.00	0.00	0.00	-1.00	20.00	
6	Settle	HLS	120.00	125.5	-4.6	0.0	432001	0.08	0.00	1.00	0.00	0.00	-1.00	20.00	
7	Calibration	zet Pup	120.50	-149.3	-8.3	10.3	433801	0.14	0.18	0.97	0.00	0.00	-1.00	20.00	
8	Calibration	zet Pup	170.75	-149.6	-9.3	12.0	614700	0.16	0.21	0.97	0.00	0.00	-1.00	20.00	
9	Observing	47 UMa	171.25	-58.7	-6.3	-12.5	616500	0.11	-0.21	0.97	0.00	0.00	-1.00	20.00	
10	Observing	47 UMa	173.00	-58.7	-6.4	-12.5	622801	0.11	-0.22	0.97	0.00	0.00	-1.00	20.00	
11	Observing	47 UMa	173.25	-58.7	-6.4	13.5	623701	0.11	0.23	0.97	0.00	0.00	-1.00	20.00	
12	Observing	47 UMa	175.00	-58.7	-6.5	13.4	630001	0.11	0.23	0.97	0.00	0.00	-1.00	20.00	
13	Observing	47 UMa	175.25	-58.7	-6.5	-12.6	630901	0.11	-0.22	0.97	0.00	0.00	-1.00	20.00	
14	Observing	47 UMa	177.00	-58.7	-6.5	-12.6	637201	0.11	-0.22	0.97	0.00	0.00	-1.00	20.00	
15	Observing	47 UMa	177.25	-58.7	-6.5	13.4	638101	0.11	0.23	0.97	0.00	0.00	-1.00	20.00	
16	Observing	47 UMa	179.00	-58.7	-6.6	13.4	644401	0.11	0.23	0.97	0.00	0.00	-1.00	20.00	
17	WFC	zet Pup	179.50	-149.7	-9.5	-13.7	646201	0.16	-0.23	0.96	0.00	0.00	-1.00	20.00	
18	WFC	zet Pup	180.25	-149.7	-9.5	-13.7	648901	0.16	-0.23	0.96	0.00	0.00	-1.00	20.00	
19	Observing	47 UMa	180.75	-58.7	-6.7	13.3	650701	0.12	0.23	0.97	0.00	0.00	-1.00	20.00	
20	Observing	47 UMa	182.50	-58.7	-6.7	13.3	657000	0.12	0.23	0.97	0.00	0.00	-1.00	20.00	
21	Observing	47 UMa	182.75	-58.7	-6.7	-12.7	657900	0.12	-0.22	0.97	0.00	0.00	-1.00	20.00	
22	Observing	47 UMa	184.50	-58.7	-6.8	-12.8	664200	0.12	-0.22	0.97	0.00	0.00	-1.00	20.00	
23	Observing	47 UMa	184.75	-58.7	-6.8	13.2	665100	0.12	0.23	0.97	0.00	0.00	-1.00	20.00	
24	Observing	47 UMa	186.50	-58.7	-6.9	13.2	671400	0.12	0.23	0.97	0.00	0.00	-1.00	20.00	
25	Observing	47 UMa	186.75	-58.7	-6.9	-12.8	672300	0.12	-0.22	0.97	0.00	0.00	-1.00	20.00	
26	Observing	47 UMa	188.50	-58.7	-6.9	-12.8	678600	0.12	-0.22	0.97	0.00	0.00	-1.00	20.00	
27	WFC	zet Pup	189.00	-149.7	-9.7	12.6	680400	0.17	0.22	0.96	0.00	0.00	-1.00	20.00	
28	WFC	zet Pup	194.75	-149.7	-9.8	12.8	701102	0.17	0.22	0.96	0.00	0.00	-1.00	20.00	
29	Observing	47 UMa	195.25	-58.7	-7.2	-13.0	702902	0.12	-0.22	0.97	0.00	0.00	-1.00	20.00	
30	Observing	47 UMa	197.00	-58.7	-7.2	-13.0	709201	0.13	-0.22	0.97	0.00	0.00	-1.00	20.00	
31	Observing	47 UMa	197.25	-58.7	-7.2	13.0	710101	0.13	0.22	0.97	0.00	0.00	-1.00	20.00	
32	Observing	47 UMa	199.00	-58.7	-7.3	12.9	716401	0.13	0.22	0.97	0.00	0.00	-1.00	20.00	

OS11 CGI Power Profile

ORONAGRAPH

OS11 Reaction Wheel Speeds

August 26-27, 2024 CGI Test Results Info Session

OS Time Series Computation Process

OS11 Low-Order Aberration Variations (before LOWFS correction)

OS11 Low-Order Aberration Variations (after LOWFS correction on DM1)

OS11 Pointing Jitter

(after Fast Steering Mirror correction)

August 26-27, 2024 CGI Test Results Info Session

OS11 HLC Band 1 Results

Jet Propulsion Laboratory California Institute of Technology OS11 HLC Band 1 – Without, With Z4-Z11 LOWFSC

0h

44h

Jitter not included

OS11 SPC-Spec Band 3 Results

Error bars show intensity variation relative to mean over OS11

OS11 HLC Postprocessing Gains

	Nois	seless		No		
Post-Processing Method	5σ contrast	Gain	FAC	5σ contrast	Gain	FAC
No MUFs						
No sub., single roll minus	1.0×10^{-8}			1.3×10^{-8}		
No sub., single roll plus	1.0×10^{-8}			1.3×10^{-8}		
No sub., roll combined	8.0×10^{-9}			9.6×10^{-9}		
cRDI, single roll	2.2×10^{-9}	4.7		8.7×10^{-9}	1.5	
cRDI, roll combined	1.5×10^{-9}	5.3	1.2	6.1×10^{-9}	1.6	1.1
cADI, roll combined	6.2×10^{-10}	12.8	2.6	7.7×10^{-9}	1.3	0.9
KLIP RDI, roll combined	1.2×10^{-9}	8.3	1.7	5.9×10^{-9}	2.0	1.4
With MUFs						
No sub., single roll minus	2.7×10^{-8}			2.9×10^{-8}		
No sub., single roll plus	2.7×10^{-8}			3.0×10^{-8}		
No sub., roll combined	2.1×10^{-8}			2.2×10^{-8}		
cRDI, single roll	3.6×10^{-9}	7.4		1.3×10^{-8}	2.3	
cRDI, roll combined	2.5×10^{-9}	8.4	1.1	8.5×10^{-9}	2.6	1.1
cADI, roll combined	1.1×10^{-9}	18.8	2.5	1.1×10^{-8}	2.0	0.9
KLIP RDI, roll combined	1.9×10^{-9}	14.3	1.9	8.1×10^{-9}	3.5	1.5

From Ygouf et al. "Roman Coronagraph Instrument Post Processing Report – OS11 HLC Distribution" (2024)

Summary

- The OS11 simulations show that the speckle stability is
 - worst for brief periods after slews when the reaction wheels are spinning down
 - otherwise dominated by residual coma, which is roll-dependent
 - may be improved by tuning the LOWFS for the lower wavefront changes compared to requirements
- Advanced post-processing techniques (e.g. KLIP) provide an improvement of up to 2x over classical RDI
 - the more unstable the system, the greater the improvement factor
- Error budget was verified using a previous OS
- OS11 time series are provided on roman.ipac.caltech.edu for the 3 base modes (HLC, SPC-Spec, SPC-WFOV)
- Revised OS11 coming? Maybe. I don't know.