

Jet Propulsion Laboratory California Institute of Technology

Coronagraph Top-Level Performance Predictions Update based on TVAC Results and Error Budget

Brian Kern

Jet Propulsion Laboratory California Institute of Technology

Pasadena, CA 91109

August 26 – 27, 2024

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 • SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
 • EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
 • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

Copyright 2024 California Institute of Technology. Government sponsorship acknowledged

Outline

- CGI performance requirements
- differential imaging
- "external" disturbances from observatory
- FRN budget
- context beyond CGI requirements

FRN budget was created and is maintained by Bijan Nemati

top-level instrument performance requirement

- Top-level performance requirement describes a relative photometric measurement of a hypothetical planet
 - star brightness: V=5
 - planet flux ratio: 10⁻⁷
 - bandpass:10% @ 575 nm (λ/D ~ 50 mas)
 - distance from star to planet: $6 9 \lambda/D$
 - integration time: 10 hrs
 - stellar angular diameter: 0.8 mas
 - signal-to-noise ratio (SNR): 5

Flux ratio 10⁻⁷ and SNR=5 imply a Flux Ratio Noise (FRN) of 2×10⁻⁸

	CGIRD ID	Name		Primary Text			Verification Approach			
	CGIRD-505	REQ: L3 CGI - Imaging with Narrow FoV Flux Ratio Noise	CGI shall be able t source to the occu time in CGI Filter E shown in Table 12.	o measure the flux ratio of a po Ited star within 10 hours of integ Band 1 with a flux ratio noise as	int gration	Verification via the CGI flux ratio noise (FRN) budget using inputs from a combination of L4 test results and L4 analysis results.				
			Table 12:	Angular separation (lambda/D)	e	5-9				
n	strument	"top level" is Le	evel 3	Point source Flux Ratio Flux Ratio Noise	1x 2x	10 ⁻⁷ 10 ⁻⁸				
_	- L3 is ins	strument.		Stellar Radius (mas)	C).4				
		, , .		Stellar V mag		5				

L1-L2 is mission / observatory

only discussing Hybrid Lyot Coronagraph (HLC) direct imaging performance here

RDI context for flux ratio measurement

- All CGI quantification of flux ratio performance is in the context of a differential measurement, of a target star (with planet whose flux ratio we are measuring) and a reference star
- Reference Differential Imaging (RDI) is enabled by the observing scenario (OS), and that observing scenario then the foundation for STOP and dynamics analysis

OTA + TCA to CGI interface specification

- CGI is not responsible for the stability of the OTA + Tertiary Collimator Assembly (TCA) optics, and
 Instrument Carrier (IC) mechanical stability
 - "inputs" to CGI
- Interface specifications ("will" statements) are provided through the CGI Requirements Document (CGIRD)

	CGIRD	Name	Primary Text	REQ Value	CBE Val	Margin	
WFE drift at <mark>max</mark> levels	687	9.4.8 OTA Wavefront Error Drift, Z5-Z11	The RSS of Z5-Z11 WFE change at the OTA-CGI exit pupil between any two points in time during a 10 hr CGI observation will not exceed 250 pm, except during slew and settling.	250 pm	52 pm	79%	but telescope
dominate the – CGI contrast stability	688	9.4.9 OTA Wavefront Error Drift, Z4-Z11	After averaging over 100 s frames, a weighted sum (defined in Table 55) of changes in WFE Rejection Filtered (WRF, defined in Figure 23) Z4-Z11 WFE at the CGI entrance pupil between any two points in time during a 10 hr CGI observation will not exceed 150 pm, except during slew and settling.	150 pm	3.1 pm	98%	margins are high
	696	9.4.13.1 LoS Jitter at OTA- CGI Interface	The root mean square (RMS) Line of Sight (LoS) jitter at the OTA-CGI exit pupil, after applying the Jitter Rejection Filter (JRF, defined in Figure 24 below), during accepted CGI frames will be less than 0.57 milliarcsec on sky per axis.	0.57 mas	0.57 mas (>=94.3 % of the time)	ОК	

note: OS10 results shown (CDR 2021)

- Other optical stability specifications are also in CGIRD: pupil shear, boresight stability, WFE jitter
- Context is that CGI must meet its L3 performance in the presence of the worst specified stability

August 26-27, 2024 CGI Test Results Info Session

observatory is more stable than its specification

structure of the FRN budget graphic

 Flowdown of L3 FRN requirement divides into 3 branches

1. calibration errors in scale factors that convert planet photons into flux ratio (normalization)

2. photometry shot noise from star + planet + zodi, detector noise

3. stability

over- or undersubtraction of starlight in differential image (temporal change in speckle brightness)

August 26-27, 2024 CGI Test Results Info Session

updates from testing

August 26-27, 2024 CGI Test Results Info Session

CBE in requirements context

- CGI reports CBEs to show compliance with requirements
 - conservatism is relevant to confidence that estimates meet requirements
 - some quantities are expressed as "not to exceed," or 3-sigma confidence intervals
 - quantities produced by modeling are "assumed worse" by Model Uncertainty Factor (MUF)
 - MUF values (factors) are based on institutional experience with previous mission life cycles
 - MUFs range from 2-8 depending on model fidelity
 - some stability terms have multiple "compounded" MUFs
 - MUFs on observatory disturbances (CGI inputs) × MUFs on CGI sensitivities to inputs
- CBEs reported here can be interpreted as "upper limits"
 - not an "unbiased" estimate of in-flight performance
- CBEs reported here are answers only to the requirements-based observing context
 - 10 hr observation of 10⁻⁷ flux ratio planet
 - lower flux ratio planets produce smaller errors for many terms, e.g., calibrations (fractional errors)
 - "nominal" case investigated here is a ~ median case for expected observatory disturbances
 - individual "best case" observations may perform significantly better
 - in practice, CGI intends to explore far longer observations (hundreds of hours for spectroscopy)
 - in flight, CGI will be able to tailor observing scenario with feedback from actual disturbances measured during previous in-flight observations

significant engineering-based conservatism in mission CBE

largest contributors to FRN

2. planet shot noise large due to bright planet

- pointing repeatability between target and reference star
- LOCam bias pattern stability
- worst-case DM actuator quantization during Z5-Z11 control

extrapolation to challenging targets

- what would it take to image ~ 3e-9 flux ratio planet with SNR=5?
 - better contrast
 - TVAC measurements ~ 1e-8 coherent, 2e-8 incoherent
 - reducing coherent contrast by ~ 2× would sufficiently reduce impact of disturbances on contrast stability
 - might require ~ hundreds of hours of HOWFSC?
 - hard to predict
 - longer integration times
 - ~ 100 hr integration times significantly reduce photometry noise
 - multiple 10-hr target-reference cycles will improve some stability terms
 - terms that are uncorrelated on multiple observing cycles will average down
 - can consider combining observations using different reference stars for greater decorrelation of errors
 - tailor LOWFSC operation for best trade between reduction of disturbances and reduction of "side effects"
- what would it take to image ~ 1e-9 flux ratio planet with SNR=5?
 - likely need to rely on significantly better post-processing
 - tailor observations to "calibrate" types of errors, train postprocessing to reject specific disturbances
 - develop HOWFSC techniques to ensure significantly different dark hole E-field morphologies with similarly "good" contrast
 - further decorrelate errors across multiple observations

August 26-27, 2024 CGI Test Results Info Session

work to go

- Evaluate FRN for spectroscopy, Wide FoV (shaped pupil coronagraphs)
- Evaluate expected performance
 - instead of "not-to-exceed" performance
- Evaluate options to achieve sufficient performance on challenging targets
 - flux ratio \lesssim few × 10⁻⁹