

Jet Propulsion Laboratory California Institute of Technology

Instrument Software Architecture: Design & Implementation

Kylee Fluckiger

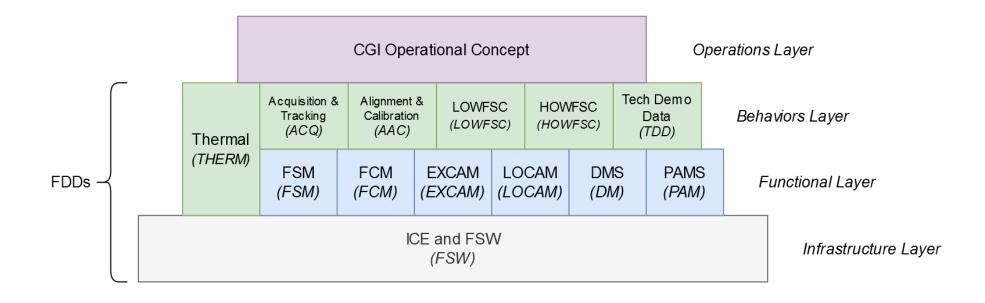
CGI FSW Lead

August 27th, 2024

• NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 • L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 • SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
 • EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
 • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

ROMAN

PACE TELE


Copyright 2024 California Institute of Technology. Government sponsorship acknowledged

CGI System Architecture

• Coronagraph System Architecture is divided into 13 functional domains, the expected behavior of each of which is described in a functional design document (FDD) that is used to guide FSW implementation.

CGI FSW Functional Capabilities

- Channel
 - Telemetry data point
 - Mapped to single source
 - Ex: temperature, parameter value, mode state, calculated offset
- Monitor
 - Condition for fault protection
 - Ex: trigger if voltage exceeds some value for 2 or more seconds

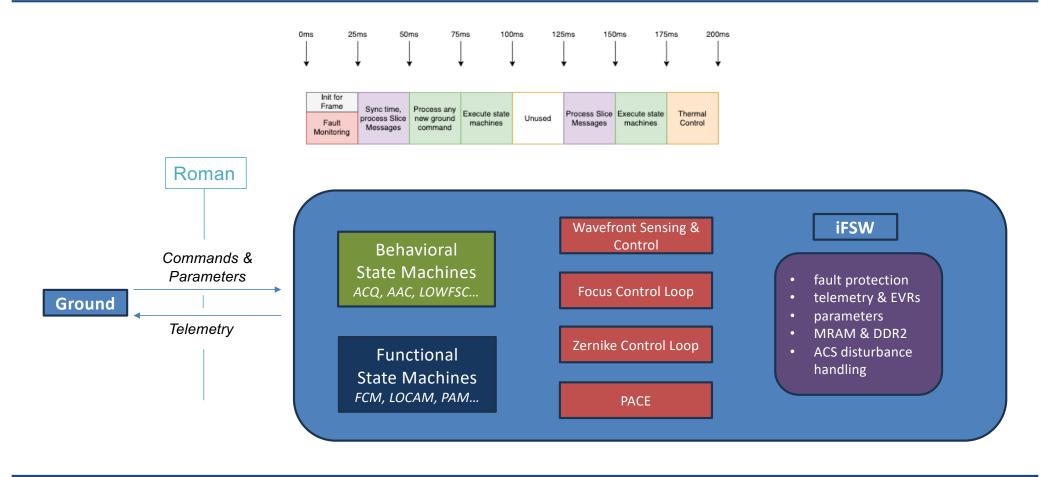
- Parameter
 - Nonvolatile value stored onboard
 - Modifiable via command
 - Ex: pixel threshold, gain factor, min/max values
- Command
 - Input to FSW to initiate some behavior
 - Ex: power hardware, perform move, close Zernike loop, halt image taking

CGI FSW Complexity

Functional Description Document Domain	# Req's FSW GND		# Cmds	# Params	# Channels FSW GND		# Monitors
ICE and FSW Infrastructure	104		30		371	156	3
FSM	45		21	22	54	24	12
FCM	26		11	21	46	38	19
EXCAM	49		17	28	174	93	27
LOCAM	38		10	11	153	67	14
DM	58		18	14	90	56	28
PAM	45		14	232	443	158	4
Thermal	28		1	295	450	142	71
Acquisition & Tracking	38		6	71	130	3	
Alignment & Calibration	24	100	7	65	65	3	
LOWFSC	75	2	20	20	88	40	20
HOWFSC	18	19	1	83	92		
Tech Demo Data	5	14	0	8	8		
	553	135			2,179	810	100
TOTALS	688		165	883	2,989		198

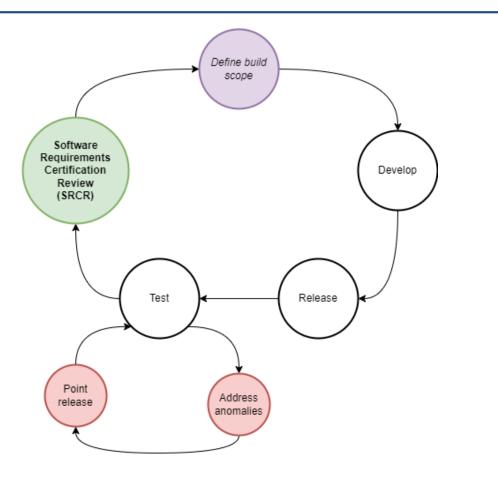
- High instrument code complexity
 - CGI FSW: 104,557 SLOC
 - typical: 30,000 70,000 SLOC
 - GSW: 107,000 SLOC
 - FPGA: 60,000 SLOC
- Embedded linear algebra required
 - modified Eigen template library [1]
- Code reuse
 - FP, telemetry, slice interfaces, parameter table
- Command and telemetry dictionary management
- Sequence engine autocoding for PAM
- Camera class inheritance for EXCAM and LOCAM

- C++ language
- VxWorks real-time operating system (RTOS)
- LEON4 processor on GR740 board
 - radiation-hardened
- Single-core software design
 - additional cores bring additional complexity
- Developed over 5+ years


- NASA class C software
 - "necessary for the science return from a single (non-primary) instrument"
- Complies with strict JPL FSW coding standards
 - based on automotive MISRA C
 - increases safety and reliability of code
 - prohibits use of dynamic memory allocation and recursive functions, among others

CGI FSW Execution Architecture

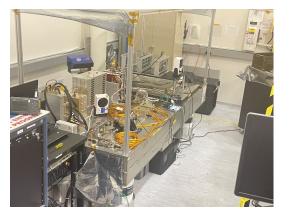
Jet Propulsion Laboratory California Institute of Technology



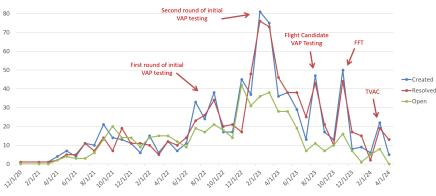
CGI FSW Development Process

Jet Propulsion Laboratory California Institute of Technology

- GitHub
 - Feature branches, merge into dev branch, release on master
 - Pull requests with reviewers enforced
- Jenkins
 - Continuous integration tool
 - Simics used for hardware emulation in testing
- Static code analysis
 - Coverity
 - CodeSonar



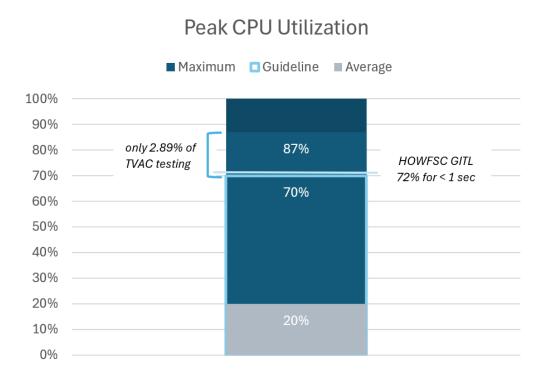
CGI FSW Testing



Jet Propulsion Laboratory California Institute of Technology

- Functional testbed (FTB) venues
 - enable both FSW
 development and V&V
 - unit testing
- Written test procedures (VAPs and PBATs)
 - regression testing
- Telemetry data system (TDS) and Grafana
 - efficient anomaly investigation

VAP = verification activity plan FFT = full functional test TVAC = thermal vacuum test


Jira Anomaly Report Burndown

CGI FSW Resource Utilization

Jet Propulsion Laboratory California Institute of Technology

Margin on utilization helps prevent starvation of critical processes such as fault protection and software watchdog reset.

- Memory
 - SDRAM: 119 MB / 256 MB
 - DDR2: 854 MB / 4 GB
 - MRAM: 26 MB / 32 MB
- HK Packet Throughput (bps)
 - Max: 100 K
 - Avg: 27.2 K
 - Allotted: 1 M
- Sci Packet Throughput (bps)
 - Max: 1.76 M
 - Avg: 125 K
 - Allotted: 60 M

CGI FSW Issues Encountered

- Dictionary inconsistencies
 - Autocoding FSW encouraged
- Resource contention
 - Shared SpaceWire ports
 - WFSC task demand
 - High and low priorities
 - Priority inversions & deadlock
- Software bugs
 - State machine flow errors
 - Misuse of types and casting
 - Floating point issues

- Incorrect or missing asynchronous behavior
 - Base classes lacked abort mechanism
 - State machines can be halted at any time by FP or ACS disturbance handling
 - Semaphores for resource locking
 - Edge cases across all code paths
 - Undesired hardware responses to asynchronous commanding required software solutions

CGI FSW Lessons Learned

Jet Propulsion Laboratory California Institute of Technology

- Asynchronous behavior defined clearly and early
 - Hardware and software can incorporate in original design
 - All requirements, really!
- Solid build and test process
 - Releases traced to requirements and V&V
- COTS hardware can cost more
 - Increased number of interfaces
 - Complexity and risk introduced further down the pipeline

- Software documentation
 - Code commenting, diagrams
 - Notes on design, unit tests, idiosyncrasies, danger zones
- HOWFSC: GITL or onboard?
 - Computational gap between requirements and capability
 - Single vs multi-core processing
 - Need margin on CPU utilization
 - Onboard HOWFSC required second processor board
 - Partition software requirements between FSW and GSW

Appendix

• [1] Malloc-Free Pseudoinverse Solver with Eigen C++ Template Library: <u>https://github.com/silverSapphire/Eigen-Malloc-Free-Pseudoinverse</u>