

Jet Propulsion Laboratory California Institute of Technology

Demonstration of LOWFSC System during CGI TVAC Test

Byoung-Joon Seo, Nanaz Fathpour, David Arndt, Joel Shields, Dhemetrios Boussalis, and Jason Hauss

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

August 26, 2024

CL # 24-4460

• NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 • L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 • SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
 • EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
 • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

Copyright 2024 California Institute of Technology. Government sponsorship acknowledged

Outline

- Overview of CGI LOWFSC System
- LOWFSC demonstration for in-orbit-like operation scenario
 - CGI perturbed by STOP-model predicted wavefront perturbation (OS10)
- Frequency analysis & Comparison with Requirements
- Summary

Overview of CGI LOWFSC system

- Line of Sight Control Loop (LCL)
 - Fast control
 - Result presented by M. Mandic & B. Kern.
- Focus Control Loop (FCL) & Zernike Control Loop (ZCL)
 - Slow control
 - Subject of this presentation.
 - First-ever system-level test during TVAC.

LOWFSC Control	Modes Corrected	Actuator	Controller Sampling Rate [Hz]	Controller Bandwidth [Hz]
Line of Sight Control Loop (LCL)	Z2, Z3	FSM	1000 Hz	$20\mathrm{Hz}$
Focus Control Loop (FCL)	Z4	FCM	$0.1\mathrm{Hz}$	$1.6 imes 10^{-3} \mathrm{Hz}$
Zernike Control Loop (ZCL)	Z5,Z6Z11	DM1	0.1 Hz	$1.6 imes 10^{-3} \mathrm{Hz}$

Design Principle for FCL & ZCL

- Design Principle
 - Each Zernike control is independent.
 - Each Z5-Z11 control architecture is identical but different from Z4 controller due to different plant, *P(s)*; DM vs FCM
 - Controllers, *C(s)*, are implemented in CGI
 FSW with control parameters are saved in MRAM.
 - Measurement delay of 20 seconds.
- NOTE:
 - No external stimuli (d) is available for test for Z4-Z11.

- Z_r: Zernike Set Point
- d : Disturbance
- Z_n : Zernike Control Output
- T : Control Cadence of 10 Seconds
- C(s) : Controller Transfer Function
- P(s) : Plant Transfer Function

Zr - d = Zn @ steady state

Tests Conducted during TVAC

- Total 6 different tests are conducted for TVAC 5 shifts.
- Step Input Response Tests are for visualization purpose
- Schroeder Input Response Test are for frequency analysis and requirement validation.
- OS10 STOP model predicted wavefront disturbance is used for demonstration of likely inorbit operation scenario.
- Zernike Test **Test Title Description & Objective** Control No Z4 test for external Step input Visualize Z4 performance **OPEN** Test 1 Test 2 **Z4** test for **external Schroeder** input Frequency analysis of Z4 OPEN performance Visualize Z4-Z11 **Z4-Z11** test for internal Step input **CLOSED** Test 3 performance **Z7** test for **external Step** input Visualize Z7 performance **CLOSED** Test 4 **Z5** test for external Schroeder input Frequency analysis of Z4 **CLOSED** Test 5 performance Test 6 **Z4-Z11** test for **external OS10** input Demonstration of likely **CLOSED** in-orbit scenario

- NOTE:
 - Z2,Z3,Z4 (LCL & FCL) are closed during all tests.
 - HOWFSC is not running during all tests.

FCL : Focus Control LoopZCL : Zernike Control LoopSchroeder : designed input signal for frequency analysis

Internal vs External Perturbations

- Internal Perturbation
 - Wavefront change due to DM or FCM change.
 - Caused by intended DM/FCM changes during HOWFSC, which LOWFSC should not remove.
 - It is known perturbation, introduces both Zernike set point (Zr) and disturbance (d) change.
 - Fast response is designed, (Alka Feed-Forward)

- External Perturbation
 - Wavefront change without DM or FCM change.
 - Caused by OTA input or unintended.
 - It is unknown perturbation, introduces only disturbance (d) change.
 - Slow response is designed.

Perturbation Injection

- Injection of Internal Perturbation
 - Use DM1 (Diagram A)
 - NOTE: DM2 internal perturbation test has not been tested.
- Injection of External Perturbation
 - No external stimuli (d) is available. Alternative approaches needed.
 - Use following step to mimic the external perturbation. (Diagram B)
 - Record current Zr
 - Move DM1 to apply external wavefront change.
 - Restore Zr
 - NOTE: We chose DM1 to inject the perturbation over DM2 to avoid unnecessary complication raised by the DM1/DM2 inconsistency issue.

OS10 STOP model Disturbance Test (1/3)

- Test Objective
 - To demonstrate Likely In-Orbit Scenario
- Test Setup
 - All LCL/FCL/ZCL CLOSED
 - Inject OS10 perturbation via DM1
 - Original OS10 signal input is ~190 hrs long, tailored into ~ 5 hrs.
- OS10 input are as small as ~ few tens of picometers RMS.
- Contrast drift of 2E-9 over ~ 5 hrs is observed. But not clear if this is control residual, cross-talks among Zernikes or other higher order drift.

OS10 STOP model Disturbance Test (2/3)

- For visualization purpose,
 - Z4 data are co-plotted.
 - Negative of Zernike Control (-Zn) was plotted to have the same sign with Disturbance command. Also biases removed. → Ideally, they are on top of each other.
- RMS of LOWFS measurement error (10 sec average) is 11.69 pm, meeting requirement of 75 pm.
- Disturbance injections vs (negative) Zernike Control match closely within 20 pm → LOWFC controls Z4 better than 20 pm.

OS10 STOP model Disturbance Test (3/3)

- RMSs of LOWFS measurement errors are smaller than requirement of 75 pm with margin for all Zernikes.
- Disturbance injections vs (negative) Control commands match closely as expected except for Z6, Z9, and Z11 → LOWFC controls Zernikes better than 20 pm.
- The deviations of Z6, Z9, Z11 are order of ~ 10s of picometers over 5 hours → Drift rate of TVAC environment.

Schroeder Input

- Schroeder signal has a broader frequency range and is efficient for characterizing the frequency response.
- Repeated long duration Schroeder signal is injected as the Zernike set point change (Zr).
 - Tested Z4 (FCL)
 - Tested Z5 only for ZCL

Frequency Analysis for FCL LOWFSC Data

- Measurements are in good agreement with design values.
- Measurements meet (the sprit of) their requirements, as summarized in next page.

Frequency Analysis for ZCL (Z5) LOWFSC Data

- Measurements are in good agreement with design values.
- Measurements meet (the sprit of) their requirements, as summarized in next page.
- Only Z5 is tested for ZCL. (Z6-Z11 are not tested)

Summary of FCL/ZCL Frequency Analysis

\mathbf{Metric}	Requirement	Z4 Design	Z4 Measured	Z5-Z11 Design	Z5-Z11 Measured
Disturbance rejection bandwidth (Hz)	0.0016	0.0013	0.0013	0.0016	0.0014
Gain margin (dB)	> 6	14	13.8	9.5	9.5
Phase margin (degrees)	> 30	75	69	46	43
Delay (sec)	< 20	20	20	14.33	15.5

- External Schroeder input tests are used for analysis.

- Only Z5 is tested for ZCL. (Z6-Z11 are not tested)

- Measurements are in good agreement with Design values.
- The disturbance rejection bandwidth does not meet the requirement in strict sense. However, it meets the sprit of the requirement, i.e., the lower frequency rejection is most important.

Summary

- FCL & ZCL work as designed/required for external perturbation.
- LOWFSC Zernike sensing errors are smaller than its requirement of 75 pm RMS.
- LOWFSC controls work better than 20 pm.
- Measure Zernike drift of ~ 10s of picometers over 5 hours dominated by Z6, Z9, and Z11.
- Measure contrast drift rate of 2E-9 over 5 hours.
- Desired (not required) but missing tests.
 - FCL/ZCL test with true external perturbation.
 - HOWFSC operation with all LCL, FCL, and ZCL closed. This further confirms the stability of the CGI control loop.
 - Follow-up test to identify the source of 2E-9 over 5 hours drift during OS10 trajectory test.
- More detail stories will be documented in the CGI JATIS paper 2024.

Roman Space Telescope

Back-up charts

Perturbation Injection

- Injection of Internal Perturbation
 - Use DM1 (Diagram A)
 - NOTE: DM2 internal perturbation test has not been tested.
- Injection of External Perturbation
 - No external stimuli (d) is available. Alternative approaches needed.
 - Instead of disturbance (d), we perturb the Zernike set points (*Zr*) for frequency response characterization. (Diagram B)
 - For OS10 trajectory demonstration, use following step to mimic the external perturbation. (Diagram C)
 - Record current Zr
 - Apply expected external WF change to DM1.
 - Restore Zr
 - NOTE: We chose DM1 to inject the perturbation over DM2 to avoid unnecessary complication raised by the DM1/DM2 inconsistency issue.

Delay

Test Calendar

	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	30-Mar	31-Mar	1-Apr	2-Apr	3-Apr	4-Apr	5-Apr	6-Apr
Day	N/A	• HOWFSC (TV- 30)	• HOWFSC (TV-30)	 Dim the star (Vmag 3) Initial Acquisition and alignment (TV- 34) HOWFSC per OADD (TV-35) 	 Restore to bright star (Vmag 0) & LOWFSC Sensor calibration Focus Control Loop Test (TV-38) 	 Spectroscopy Wavelength Calibration (TV-40b) Photometry calibration information lost + System upset 	 TV-41:Finish TV-40k (Spectroscopy Wavecal) & PAM Alignment In Parallel: Hold Hot Thermal Balance Data Review Pt. II 	 Complete Zernike Control Loop Test (TV-39) PBAT to complete TV-13b: PID Thermal Control (Closed Loop) to address PFR 218336
Swing	N/A	HOWFSC (TV- 30)	• HOWFSC (TV-30)	• HOWFSC per OADD (TV-35)	 Take additional images to address PFR 218555 (3- 5:30pm) Update and configure FSW V 1.1.3. (start 5:30pm) Simultaneously at 5:30pm: CC Take QCM water measurement (Annex) 	 Focus Control Loop Test (TV-38) Start TV-22: Phase Retrival with DM at OV and OTA maps 	• Zernike Control Loop Test (TV-39)	 Transition to Cold Thermal Balance Simultaneously: CC Take QCM Measurements (Annex)
Grave	 LOWFSC Sensor Trained with initial HOWFSC Solution with bright star (Vmag 0) HOWFSC (TV-30) 	HOWFSC (TV- 30)	 HOWFSC (TV-30) NFOV Band 1 Dark hole generated (HOWFSC ID 250 	 Observation per OADD (TV-36) Core Throughput Measurement (TV-37) 	Spectroscopy PAM Alignment (TV-40a)	 Complete TV-22: Phase Retrival with DM at 0V and OTA maps TV-37: Core Throughput Measurement Diagnostic PBAT (potentially TV-39) 	• Zernike Control Loop Test (TV-39)	 Transition to Cold Thermal Balance

Step Response Expected

- For the quicker and fast convergence, CGI FSW employs 2-Step OFF scheme for the internal perturbation.
 - NOTE: No Requirement on convergence speed for the internal perturbation.

FCL Test for External Step Input

- Test Objective
 - Verify FCL works as expected by model.
- Test Setup
 - With no available stimuli, inject Z4 set points.
 - $-\pm$ 5, 3, 1 nm Steps
 - 15 minutes long injection while control bandwidth is 1.6 mHz (or ~10 minutes)
- The measured LOWFSC Z4 is in **good agreement** with model simulation.
- Concurrent Contrast measurement
 - Contrast sensitivity of > 2.44E-9 /nm² to Z4 is measured.
 - Z4 bias of -1.22 nm is measured in the dark hole. (Some of its cause unknown)

Test 1: FCL Test for External Step Input ...

- Test Objective
 - Verify FCL works as expected by model.
- Test Setup
 - With no available stimuli, inject Z4 set points.
 - $-\pm$ 5, 3, 1 nm Steps
 - 15 minutes long injection while control bandwidth is 1.6 mHz (or ~10 minutes)
- The measured LOWFSC Z4 is in good agreement with model simulation.

NFOV Band 1 dark hole was monitored concurrently.

Jet Propulsion Laboratory

California Institute of Technology

- Observe the Contrast upset when Z4 ± 5 nm is applied.
- Contrast sensitivity of > 2.44E-9 /nm² to Z4 is measured.
- Z4 bias of -1.22 nm is measured in the dark hole. (Some of its cause unknown)

Test 3: FCL/ZCL Test for Internal Step Input ...

- Test Objective
 - Verify ZCL works as expected by model for internal perturbation.
- Test Setup
 - Apply Z4-Z11 each by applying DM1 template 5 nm.
 - $-\pm 5$ nm Steps
 - 5 minutes long injection with Feed-Forward
- The measured LOWFSC Z4-Z11 are NOT agreeing with 2-Step OFF scheme but in good agreement with the case with no extra step off (Under investigation) (Plot will be updated)

• EXCAM images are saturated unintentionally for Test 3. We cannot quantify the contrast sensitivity on each Zernike correctly.

Jet Propulsion Laboratory

California Institute of Technology

• Nonetheless, we evaluate the lower bound of Zernike sensitivity.

Measured lower bound of Zernike Sensitivity

Z4 2.44e-9 3.71e-9
Z5 >1.5e-9 6.64e-10
Z6 >1.0e-9 1.07e-9
Z7 >2.0e-8 2.2e-8
Z8 >2.0e-8 1.99e-8
Z9 >6.3e-9 8.67e-9
Z10 >3.0e-9 3.44e-9
ugust 2 Z11 >4.5e-8 4.96e-8

Test 4: ZCL (Z7) Test for External Step Input ...

- Test Objective
 - Verify ZCL works as expected by model.
- Test Setup
 - Same as Test 1 except Z7 test with ZCL closed.
- The measured LOWFSC Z7 is in good agreement with model simulation. (To be updated)

... Test 4: ZCL (Z7) Test for External Step Input

- EXCAM images are saturated unintentionally for Test 4. We cannot quantify the contrast sensitivity on each Zernike.
- Contrast sensitivity of > 4.5E-9 /nm² to Z7 is measured. (> is for accounting for EXCAM saturation)
- Not like Z4, No Z7 bias offset is observed

