

Jet Propulsion Laboratory California Institute of Technology

Optical Alignment of the Roman Space Telescope's Coronagraph Instrument (CGI)

Brian Monacelli Mark Colavita Principal Optical Engineers, JPL

> Jet Propulsion Laboratory, California Institute of Technology

> > 26 August 2024

• NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
• L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
• SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
• EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
• CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

© 2024. California Institute of Technology. Government sponsorship acknowledged. Approved for unlimited release via record URS327619. The clearance number is CL#24-4464.

CGI Optical Alignment Sequence

Interferometer Alignment

OAP8 Alignment

OAP7 Alignment

OAP6 and Surrogate FPAM Alignment

OAP5 Alignment

OAP4 and Surrogate SPAM Alignment

OAP3 and SFM Alignment

Alignment of Surrogate DMs

OAP2 Alignment

OAP1 Alignment

Surrogate FPAM Relocation

Initial LOBE Alignment

FCM Integration and Alignment

SPAM Integration and Alignment

FPAM Integration and Alignment

LSAM Integration and Alignment

DM2 Integration and Alignment

DM1 Integration and Alignment

FSM Integration and Alignment

FSAM Integration and Alignment

CFAM Integration and Alignment

DPAM Integration and Alignment

LOCam Integration and Alignment

ExCam Integration and Alignment

End-to-end WFE of CGI Static Optics

CGI DM Optical Alignment Objectives

- 1. Replace surrogate DMs with flight DMs
- 2. Align DM actuator grids to OBSA Coordinate System
- 3. Align pupils to coincide
- 4. Register DM actuators

Measurement of each objective was iterated as alignment improved

End-to-end WFE with Inherent DM Aberrations

CGI DM Optical Alignment Objectives

- 1. Replace surrogate DMs with flight DMs
- 2. Align DM actuator grids to OBSA Coordinate System
- 3. Align pupils to coincide
- 4. Register DM actuators
- 5. Realign OAP mirrors to compensate innate DM aberrations and minimize end-to-end WFE

Measurement of each objective was iterated as alignment improved

DM1 pokes

DM2 pokes

Register laterally DM2 to DM1 via pokes (difference interferogram)

Register laterally DM2 to DM1 via pokes (difference interferogram)

Optics Used for DM Aberration-compensation Alignment

Final end-to-end WFE minimized by realigning OAP mirrors 1, 2, 3, and 4

Measured WFE of 44.4 nm RMS before phase-flattening of DMs

CGI Alignment Checks through Environmental Testing

- An alignment telescope was aligned to the OBSA coordinate system via fiducials on the CGI and the CGI Instrument Carrier
- Measured boresight and pupil stability, as well as checking close clearances in the CGI beam train
- Results: minor changes through environments; no change after delivery
 - Final values comply with our interface requirements with Roman

Example raw boresight measurement data

ROMAN CORONAGRAPH