

Jet Propulsion Laboratory California Institute of Technology

CGI Technical Status Phase Retrieval

David Marx Fang Shi Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

August 26 - 27, 2024

CL# 24-4439

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
 L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
 SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
 EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
 • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

Copyright 2024 California Institute of Technology. Government sponsorship acknowledged

- Purposes of Phase Retrieval: Alignment and Calibration
 - DM Registration
 - Flatten Front-end Wavefront
 - Measure Total WFE and Back-end WFE
- Review of Phase Retrieval Method
 - Predicted Performance
- TVAC
 - Variation from Design and Models
 - Meets All Requirements:
 - Repeatability: Requirement < 15nm rms, TVAC Measured 8nm rms
 - Capture Range:
 - Requirement = ±108nm rms defocus, TVAC Measured ±123.1nm rms
 - Requirement = ±98nm rms ex defocus, TVAC Measured ±164.4nm rms
 - Accuracy: TVAC Measurements:
 - Small ΔZ_4 Steps Using Fine FCM Motion: 2.1nm steps with maximum nonlinearity of 0.5nm
 - Examples and Images
 - Flattening sequence
 - DM Registration
 - Back-end pinhole phase retrieval

ROMAN CORONAGRAPH

Focus Diversity for Phase Retrieval: Four Defocus Lenses + Pupil Image

 Pupil Image
 Soure Image (log scale)

 Image
 Image

Propagation Model is in Camera-Lens Domain

a) Gerchberg-Saxton Iterations

- Defocus Diversity Near Pupil
- Recovers High Spatial Frequencies
- Propagation Model Back-and-Forth Accounts for Lenses in a Single Integration

b) Parametric Fitting

Defocus Diversity Near Star Image Recovers Low Spatial Frequencies Natural Weighted Regularized Gradient Descent Weighted by Noise Variance

c) The "Recipe":

Alternate Between GS Iterations and Parametric Fitting

Sources of Estimation Error

- Differences Between Full Reference Model (CGISIM) and PR Propagation Model:
 - Bandwidth --- Full Model Incoherently Sums Multiple Wavelengths
 - Treatment of Doublet Lenses
 - Integration Across Camera Pixels, whereas PR Propagates Pixel to pixel
 - No Assumptions About the Common Plane
 - Fixed Parameters, Not Solved For, Potential Knowledge Errors:
 - Lens EFL (six lenses)
 - Propagation Distance Lens-to-Camera

- Modeled Phase Retrieval
 - <u>"Truth" = CGISIM</u>

Effect	Error (nm rms)	Z4 error (nm rms)
No lens errors	2.8	-0.4
Add lens errors	4.4	0.2
Add polarization	4.4	0.2
Add 0.5% EFL knowledge error	11.5	0.3
Lens errors + 100nm defocus	4.3	-0.2
Lens errors + CCD noise	5.8	0.1

- Modification #1: Do Not Use DI Image
 - Phase Retrieval Attempts to Reproduce the "woven fabric" Background.
 - Impossible Because Background is Not From Propagated Light.

- Modification #2: Propagation Model
 - Modify Propagation Distance to EXCAM by -1mm
 - Modify PIL Air-space by +0.02mm

- Modification #3: Add Defocus 3 and Defocus 4 to GS Iterations
 - Parameters Used in Parametric Fitting Were Not Enough

August 26-27, 2024 CGI Test Results Info Session

- Modification #3: Add Defocus 3 and Defocus 4 to GS Iterations
 - Parameters Used in Parametric Fitting Were Not Enough

August 26-27, 2024 CGI Test Results Info Session

Summary of Phase Retrieval Requirements

- Static Repeatability: Requirement < 15nm rms
 - TVAC: Repeated Measurement 11 Times
 - Max Raw Repeatability Error: 8.9nm rms (mostly high spatial frequency)
 - Max Zernike Fit Repeatability Error: 3.2nm
- Capture Range:
 - Requirement = ±108nm rms defocus, TVAC Measured ±123.1nm rms
 - Requirement = ±98nm rms ex defocus, TVAC Measured ±164.4nm rms
- Accuracy: Requirement < 26nm rms
 - TVAC: Measured Differential Accuracy
 - Small ΔZ_4 Steps Using Fine FCM Motion
 - Max Linearity Error of 0.5nm

Phase Retrieval Repeatability

- 11 Sets of Phase Retrieval Images
- Before Wavefront Flattening, WFE ~ 42nm rms
- Raw (pixel by pixel) PR repeatability error:
 - $\Delta w F E_{rms}(PR_NUM) = RMS[wFE_{PR_NUM}(pixel_j) wFE_{mean}(pixel_j)], max = 8.9nm$
- Zernike fitted (37 terms) PR repeatability error:
 - $\Delta WFE_{Zernike}(PR_NUM) = RMS[Zernike Fitted(WFE_{PR_NUM}) Zernike Fitted(WFE_{mean})]$
 - Largest Error: Z4, $\sigma = 1.2$ nm

Phase Retrieval Capture Range: FCM Coarse Stage

- Measured Z4 vs FCM Coarse Stage
- Demonstrates Capture Range: -157nm to +88nm
- FCM Coarse Stage Is Not Suitable For Accuracy Comparison

PR Accuracy: Measurement of FCM Fine Stage Scan

- FCM Fine Stage: PZT with Strain Guage Provides Delta-Focus Truth
- Recorded Phase Retrieval Images
 - Steps of 2.1nm ±0.37nm Defocus
 - Uncertainty is from Linearity + Creep
- Plot Measured ΔZ_4 vs Expected ΔZ_4
 - rms Linearity Error = 0.28nm, max Linearity Error = 0.54nm

WFE ex Z4 Was Stable

TVAC PHASE RETRIEVAL EXAMPLES

Sequence of Wavefront Flattening

TVAC PHASE RETRIEVAL EXAMPLES

• DM Registration

TVAC PHASE RETRIEVAL EXAMPLES

- Back-end WFE
 - Pinhole at FPM

Summary

- Phase Retrieval Approach Based On Testbed Experience
- Design and Method Tested Against CGISIM
- Reality of TVAC Required Modifications
 - Most Notable Eliminating the DI Image from the Calculation
- All Requirements Met:
 - Repeatability
 - Accuracy
 - Capture Range
- Phase Retrieval a Key Tool for Alignment and Calibration

Roman Space Telescope

Back-up charts

Phase Retrieval Result With Modifications

- Design vs Modified Parameters e.g.: "Front-end Phase Flat"
 - Change is primarily Z4:
 - Prop distance -1mm: -10nm Z4
 - PIL air-space: -5nm Z4
 - Including Def 3 & 4: 0 Z4

After Modifications

Zernike # (Noll)

Image Correlations

	Lens	Design	Modified
	Def 1	0.999	0.999
GS	Def 2	0.999	0.999
Diamaa	Def 3		0.999
Planes	Def 4		0.999
	PIL	0.999	0.998
PAR	Def 3	0.995	0.999
Planes	Def 4	0.991	0.999