

Jet Propulsion Laboratory California Institute of Technology

LOS Control TVAC Results

Milan Mandić, Clement Gaidon, Brian Kern, Caleb Baker, Nanaz Fathpour, Joel Shields, David Arndt

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

August 26 – 27, 2024

• NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
• L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
• SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER •
• EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY •
• CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

Copyright 2024 California Institute of Technology. CL#24-4479 Government sponsorship acknowledged

LOS Control Objectives

- One of the main objectives of LOS control subsystem is to achieve < 1 mas rms on-the-sky pointing in each axis
 - Main sources of pointing error are due to static and dynamic imbalances of the reaction wheel (frequencies driven by the RW speeds) and ACS (low, < 1 Hz)
 - Modeling has shown that main contribution to RW disturbances show up at fundamental frequencies (i.e., speed of the RW)
 - In order for keep frequency content of disturbances low and within the bandwidth of the FSM LOS control (~20Hz):
 - RW speeds are operationally limited to an ~ 0-5 RPS range,
 - RW offloads occurring during the slews.
 - Monte Carlo results have show that we can meet the "1 mas 70% of time" requirement with significant margin assuming the interface requirement with observatory ("external disturbance") is satisfied
- Another objective was to demonstrate successful capture range on LOWFS (80 mas)
 - Since CGI does not have a dedicated acquisition sensor, star capture has to occur on the guidance sensor, LOWFS which has a nonlinear response away from the center of the mask

Objectives of LOS TVAC Testing

- Main objectives of TVAC testing were to:
 - Demonstrate rejection capability of the control design
 - Demonstrate capture range
- Functionality of the system successfully demonstrated in air during risk-reduction FFT testing,
- TVAC provided flight-like environment with no atmospheric seeing.
 - This allowed for cleaner signals and better signal to noise ratio
- Both objectives have been demonstrated successfully

LOS Sample Disturbance Rejection - Movie

Sample movie:

- LOCAM images
- External disturbance signal turned on during whole recording
- LOS control turned on after several seconds

With control

RMS = 0.33 mas

Z3 with CTRL RMS = 0.64 mas

Approach: Schroeder and Disturbance Rejection

In order to properly assess the disturbance rejection capability, we used Schroeder disturbance signal applied via external jitter mirror

• Schroeder signal is similar to "sine sweep", with power applied to specific frequencies

Open/Closed LOS loop PSDs with Schroeder

Frequency Domain: TVAC Disturbance Rejection Plots

Frequency (Hz)

Tested with brighter (Vmag = 2.55) and dimmer stars (Vmag = 5) with camera gain adjusted

Jet Propulsion Laboratory California Institute of Technology

- 1. Flux recovered
- 2. Controller finds the trained location ("calibrated center of the mask")
- Capture starts from the center of the FSM range, finds a path to the star, slightly beyond 80 mas in tilt axis
- 4. LOCAM image recovered to expected morphology
- 5. Image sum stays at the expected high level
- 6. Various offsets were tested for capture during FFT and TVAC with and without representative disturbance

end of the tes

High-Frequency Jitter Contribution

- Data shows high frequency contribution in Z3 channel only
 - Frequency content mainly @ ~180 Hz and ~190 Hz
 - Suspected external line noise and potential structural mode (possibly external)
 - Line noise is typical in testing, not present in flight
 - Suspected structural mode contribution varies, 0.2 0.45 mas
- Additional accel data identifies
 - Line noise mode at ~180Hz across many sets of data (harmonic)
 - Structural mode at ~190Hz at CVS location
 - Sets 107,108,109
 - Exact source not identified

Accel data from CVS location

Line noise harmonic @ 180Hz (in run 1, about 0.7mas, but varies) (not present in flight)

Summary

- During the functional testing, we demonstrated the functionality of the LOS control system in air
- Testing in vacuum allowed for a cleared signal and better evaluation of the disturbance rejection
 - Demonstrated appropriate disturbance rejection capability of the LOS control
 - Demonstrated appropriate capture range of the system
 - LOS loop remained closed during testing for an extended period of time (tens of hours), performing nominally