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 Collimated Beam

* Co-incident OTA+TCA exit pupil plane and CGI entrance
pupil plane

+ Key interface requirements:
— = 0.5mm pupil shear
* Not hard stop; TTFold mirror has greater range of motion

— = 1.5 asec on-the-sky boresight alignment tolerance

* Not hard stop; OTA Entrance Aperture Plate (field stop) has reserve
allocation

— = 1.31 mrad pupil clocking
* No mechanism to compensate for clocking
* Less sensitive to optic displacements

Reviewed and determined not to contain CUI.
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Instrument Interface e 4asec vignetted FOV
¢ 3asec unvignetted FOV
¢ Receive 40mm dia beam at entrance pupil

Instrument Design ¢ HLC Coronagraph

¢ SPC Coronagraph

¢ Direct Imaging Mode

¢ Pupil Imaging Mode

* Slit Spectroscopy Mode

e Polarized Direct Imaging Mode

¢ Observing Bands:
* Band1 (10% centered on 575nm) Imaging NFOV
* Band 2 (15% centered on 660nm) Spectroscopy
* Band 3 (15% centered on 760nm) Spectroscopy
* Band 4 (10% centered on 825nm) Imaging WFOV

* Imaging plate scale: 0.022 asec/pixel

Control * Fast Steering Mirror for Pointing Control (FSM)
¢ Focus Control Mirror for defocus control (FCM)
* Deformable mirrors (x2) for wavefront amplitude and phase control (DM1 & DM2)

Mode selection * Mechanism to swap SPC masks (SPAM)
¢ Located before occulter focal plane
* Mechanism to swap focal plane masks (FPAM)
¢ Mechanism to swap Lyot stop masks (LSAM)
* Located at first pupil plane following occulter focal plane
¢ Mechanism to swap field stops (FSAM)
* Mechanism to swap color filters (CFAM)
* Mechanism to swap imaging optics (DPAM)

Deformable Mirrors ¢ Located before focal plane masks
¢ Separated by 1m
e Correct wavefront Zernikes 4-11

Low Order Wavefront Sensor ¢ Centered at 575nm
e 128nm bandpass
e Sense Zernikes 2-11
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Input from
Observatory
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Input from
Observatory

*CFAM baffle not yet installed

Reviewed and determined not to contain CUI.
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« The CGl front-end (FSM through FPAM) is where the
maijority of coronagraphic “magic” occurs.

+ Key components include:

» Fast Steering Mirror (FSM) for pointing control

» Focus Control Mirror (FCM) for focus
compensation

« Deformable mirrors (DM1 & DM2) for wavefront
amplitude and phase control

» Shaped pupil coronagraph masks on a precision
alignment mechanism (PAM)

» Focal plane masks (a.k.a. occulters) on a PAM

» Two OAP-pair relays produce two internal pupil
planes.

* One OAP of the third relay produces the occulter focal
plane and Low Order Wavefront Sensor pick-off

Reviewed and determined not to contain CUI.
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* The first OAP-pair relay produces an internal pupil plane for DM1.
This DM performs phase correction of the wavefront.

* The FCM is located between the two OAPs such that piston of the
mirror affects defocus with very little additional optical abberations.

+ After reflecting from OAP1, the converging beam passes through the
back-side of OAP2 by way of a through hole smaller than the central
obscuration of the Roman telescope pupil.

» This allows the FCM surface normal to be parallel to the beam
between the two OAPs.

August 26-27, 2024 CGI Test Results Info Session feviewedand determined notto contain CUL 9
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* The first OAP-pair relay produces an internal pupil plane for DM1.
This DM performs phase correction of the wavefront.

* The FCM is located between the two OAPs such that piston of the
mirror affects defocus with very little additional optical abberations.

+ After reflecting from OAP1, the converging beam passes through the
back-side of OAP2 by way of a through hole smaller than the central
obscuration of the Roman telescope pupil.

» This allows the FCM surface normal to be parallel to the beam
between the two OAPs.

* Note: the hole in OAP2 is 9mm diameter.
+ It was a challenge to both accurately fabricate the OAP with a
stepped hole in the center as well as aligning it within the relay.

+ It was especially challenging to displace OAP1 and OAP2 and
the FCM to offset DM surface deformations under vacuum.

August 26-27, 2024 CGI Test Results Info Session Reviewed and determined not o contain CUL 10
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The CGI Back-end (FPAM through EXCAM) provides
additional coronagraphic support, color filters, and
imaging modes.

Key components include:
+ Lyot stop at a pupil plane
» Field stops at a focal plane
« Color filters
* Imaging optics

The third OAP-pair relay produces a third pupil plane
for the Lyot stop.

The fourth OAP-pair relay produces a focal plane for
the field stops and a collimated beam for the color
filters and image lenses.

Back End

ROMAN CORONAGRAPH

Reviewed and determined not to contain CUI.
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« A M4 phase dimple on each FPAM occulter allows for
Zernike wavefront sensing of the starlight reflected.

* This allows the Low Order Wavefront Sensor

(LOWFS) to sense wavefront Zernikes from Z2
through Z11.

« LOWES provides pointing feedback to the CGl internal
Attitude Control System (ACS).

« LOWEFS also provides wavefront sensing for active
wavefront compensation using the DMs.

* Note the optical design of the LOWFS Optical Barrel
Element (LOBE) had originally accommodated a
separate optical path for a starshade sensor and
therefore is a non-optimal pupil relay especially for
fields further off-axis.

August 26-27, 2024 CGI Test Results Info Session Reviewed and determined not o contain CUL 12
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Fast Steering Mirror (FSM)

o

Deformable Mirrors (one shown) Exoplanet Camera (EXCAM) (not shown)

Low Order Wavefront Sensing Camera (LOCAM)

Reviewed and determined not to contain CUI.
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Color Filter Alignment Mechanism (CFAM)

Focal Plane Alignment Mechanism (FPAM) Field Stop Alignment Mechanism (FSAM) Direct Imaging and Polarization Alignment Mechanism (DPAM)

Reviewed and determined not to contain CUI.



Jet Propulsion Laboratory = =
@ California Institute of Technology S tatl C O ptl CS

ROMAN CORONAGRAPH

Off-axis Parabola (OAP) Mirrors Off-axis Parabola (OAP) Mirror #2 (OAP2)

With through hole

i
LOWEFS Optical Barrel Element (LOBE)
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OTA+TCA Polarization Performance
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Polarization Retardance Analysis of OTA + TCA:
— Optimal layout selected from a set of candidate o
. L I NN
options. Retardance summary AR LT
Filename => TCA_ 1M POMA 3M_TOMA 180716_C4a.len Prrrrrr . o=
Piston removed PEEEEEErEe - S~
Masximum Minimum  Maximum T = AR
Zoom Field Wavelength Magnitude  Magnitude Magnitude RMS [ SN NNN
ey /77T VNNN
1 1 950.000 0.09391 0.06653 0.01782 0.00710 [ /0T TAAN
1 1 850.000 0.11877 0.08263 0.02474 0.00927 | |
1 1 750.000 0.10826 0.07263 0.02411 0.00902
1 1 650.000 0.06509 0.04018 0.01591 0.00618
1 1 550.000 0.01735 0.00473 0.00813 0.00292
1 1 450.000 0.13953 0.09375 0.02753 0.01140

531,91

TCA_1M_POMA 3M_TOMA_ 180716 _Cda.len

scale:

0.05

JPM 27-Jul-18

Intensity at 450 nm (input polarized £45°)

Py

+45°/X polarizer -45°/X polarizer

(38.332% to 40.222%)

+45°/Y polarizer -45°/Y polarizer
(37.028% to 38.636%) (37.028% to 38.636%)
Mirror symmetric

(38.332% to 40.222%)

Phases at 450 n

WAVEFRONT ABERRATION

+45°/X polarizer

(-0.209 t0 0.1220 A)

+45°/Y polarizer
(023510 0.1175 A)

m 45°

-45°/X polarizer
(-0.209 to 0.1220 A)

-45°1Y polarizer
(0.235100.1175 A)

Mirror symmetric as expected. Largest component is
polarization independent phase.

All retardance Piston removed
0.140 max 0.028 max

Analysis provided by Jim McGuire

Reviewed and determined not to contain CUI.
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Optical Performance — WFE
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*  An unexpected amount of defocus (Z4) and astigmatism
(Z6) was present on the deformable mirror surfaces during
TVAC testing.

+  Self-flattening the deformable mirrors with actuator stroke
would require significant wavefront control capacity.

* It was decided to deliberately displace OAPs 1-4 and the
FCM to offset about 70% of this deformation while under
dry nitrogen purge.

*  Pre-DM installation WFE:
—  Front-end Z5+ WFE: 16.95 nm rms
—  Front-end Z4 WFE: 3.22 nm rms
— Back-end Z4+ WFE: 24.1 nm rms

. Post-DM installation WFE (expected; DMs introduce
wavefront aberrations):
—  Front-end Z5+ WFE: ~72 nm rms
—  Front-end Z4 WFE: ~50 nm rms
— Back-end Z4+ WFE: no change

rms nm

Front-end + Back-end, Post-Flattening

10.0
7.5

2.51

0.0

Amplitude

Post-wavefront flattening prior to EFC (PRNUM 266, includes
back-end):

—  Z4+:16.44 nmrms

- Z4 :10.3nmrms

-  Z5+:12.8 nmrms

Back-end WFE only (measured with pinhole at FPAM, full circular
aperture):

—  Z4+:22.40 nmrms

- Z4 :21.42 nmrms

—  Z5+:6.55nmrms

Back-end OnIy
Amplitude

WFE
iR E
N 2 ]

=200 rms WFE = 22.40 nm

PRNUM 266

=
o
o

o
N
o
WFE (nm)

WFE (nm)

rms WFE = 16.44 nm

I —
4 5 6

20+

rms nm
=
o

o wu

Zernike # (Noll) Zernlke # (Noll)
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Stray Light Control

Stray light control is critical to a coronagraph.
Methods include:

2.73 photons/mm?2/sec within the dark hole, verified by analysis

High quality optical surfaces
Color filters

Baffles (stand-alone and integrated)

Beam dumps

Bladed stray light guard at entrance

Light-tight MLI enclosure
Contamination control

Includes MUF = 3,

MUF = 10 for radiation induced luminescence
As-built Stray Light Budget

DNG592344
REQ: L4 Performance - Stray light

24.0 ph/mm?2/s
2.73 ph/mme2/scs
a8.6%[margin
sum|
CGlIFRN due toncoherent tray
Luminescence
aht
2355 ph/mmA2/s 21,645 ph/mmA2/s
0.032 ph/mm®"2/s CBE 2.700 ph/mm*2/s CBE
58 6¥margin 57 5[ margin
fom
CGl Internal Scatter oD

@ EXCAM (Incoherent)

2.208" ph/mm*2/s
8.24E03 ph/mm~2/s CBE

0.150 ph/mmA2/s
2.40E02 ph/mm*2/s CBE

CBEW/MUF=3

8.244E03 ph/mm"2/s
™

55 exmargin 34 0%[margin
Calinternalcatter
Rogue Paths
EXCAM (Incoherent)
ORI ) WIMUF =3

~
8.21E08 ph/mm*2/s

Luminescence CBE
W/MUF=10

N
2.700 ph/mm~2/s

Light-tightness of MLI
w/MUF=3

~
2.40E02 ph/mm*2/s
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»  Astray light leakage was found during TVAC.

. What occurred: Back-lighting highlights I S
- -of- i [ i i aps around color filters i 8
Ou.t o.f band light diffracted |nt9 the field stop following EFC gap 2 (\_) (™ ,\J k) ;’ R
—  This light bypassed the color filter and entered the dark hole. .

J a8 -~/

2O OOS

Stray light leakage shown in a pupil image

+  Cause:
1. A design flaw in the color filter mount exposed a gap through which light could
bypass the color filter.

2. In addition, the original color filter baffle had been removed, after bench
fabrication, to accommodate harnessing.

3. Traditional stray light analysis had not modeled diffraction due to wavefront
manipulation by EFC.

Installed CFAM baffle
. Solution:

— Model a diffracted beam at the field stop that overfills the color filter and determine
the proper baffle aperture to ensure no gaps are illuminated.

— Fabricate a new baffle aperture and re-install the baffle onto original interface to
cover the gaps.
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Optical Throughput
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The o pt| cal throu g h P ut of the CGl is a T'a"s(';';:/';'l')“"e Coating Material Bandl | Band2 | Band3 | Band4 | LOWFS Notes
combination of mirror reflectivity, optic _
. . . . . FSM R Protected Silver 98.30% 98.38% 99.00% 99.48% 98.37% |8-8732R 8 deg
transm|ss|on, and res|d ual transm|SS|on 0OAP1 R Protected Siver 99.24% 98.61% | 98.44% | 98.74% | 99.19% |6-8648R 8 deg
FCM R Protected Silver 98.18% 98.10% 98.54% 98.89% 98.23% |8-8380R 8 deg
i H OAP2 R Protected Silver 99.24% 98.61% 98.44% 98.74% 99.19% [6-8648R 8 deg
after Contam I natlon IOSS' DM1 R Aluminum 91.12% 90.07% 88.60% 86.10% 91.08% [1MM48-009
DbM2 R Aluminum 91.10% 90.07% 88.60% 86.03% 91.07%  [1MM48-008
OAP3 R Protected Silver 99.24% 98.61% 98.44% 98.74% 99.19% |6-8648R 8 deg
SFM R Protected Silver 98.20% 98.10% 98.53% 98.88% 98.24% [8-8261R 8 deg
C H i H OAP4 R Protected Silver 98.10% 97.79% 98.14% 98.57% 98.11% |6-8763R 8 deg
Oronag raph mlrror Coatlngs are a” hlg h SPAM R Protected Silver 98.18% 98.10% 98.54% 98.89% 98.23%  [8-8380R 8 deg
reﬂeCtIVIty protected Silver W|th the OAP5 R Protected Silver 98.10% 97.79% 98.14% 98.57% 98.11% |6-8763R 8 deg
’
exception of bare aluminum on the DMs. Coring 7980 fused silca grade subtrte
from material product information, assume 99%
O CG transmission
Thls IS K for I " FPAM T Fused Silica w/AR coatings 98.46% apply worst of Batches 1 and 2, Sides 1 and 2
OAP6 R Protected Silver 98.10% 97.79% 98.14% 98.57% 6-8763R 8 deg
LSAM M N/A mask
OAP7 R Protected Silver 98.10% 97.79% 98.14% 98.57% 6-8763R 8 deg
H LSAM M N/A mask
Th e ta b I e to th e rl g ht Ca ptu reS th e OAP8 R Protected Silver 99.24% 98.61% 98.44% 98.74% 6-8648R 8 deg
- 1 H CFAM T Fused Silica w/filter + AR 91.59% worst case avg from 5 measured regions
throughPUt Of eaCh aS bu"t OptIC for eaCh DPAM (DI Lens) T 99.05% 99.56% 99.70% 99.72% From Tyler Groff
H Camera FM R Protected Silver 97.51% 98.16% 98.55% 98.68% 97.65% |8-8431R; both serial numbers are within 0.01% for band 1
observation waveband and LOWFS.

For the threshold observing waveband
(Band 1), the total estimated throughput 15
months after launch, is 51%.

The average contamination throughput loss, 15 months after launch, is 14.8% or 85.2% transmission.

The total average Band 1 throughput 15 months after launch is 85.2% * 60.4% = 51%




