

Roman Coronagraph Test Results Info Session: Instrument Optical Design Description

Gary Kuan

Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA 91109

August 26 – 27, 2024

Cleared for unlimited release, CL#24-4526

Copyright 2024 California Institute of Technology. Government sponsorship acknowledged **Reviewed and determined not to contain CUI.**

• NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY • • L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER • • SPACE TELESCOPE SCIENCE INSTITUTE • INFRARED PROCESSING AND ANALYSIS CENTER • • EUROPEAN SPACE AGENCY • JAPAN AEROSPACE EXPLORATION AGENCY • • CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

÷

Workshop Schedule

 $\overline{}$

Roman Coronagraph Test Results Info Session - Day 2

August 26-27, 2024 CGI Test Results Info Session 2

Outline

- 1. Coronagraph Instrument Interface to the **Observatory**
- 2. Coronagraph Design Requirements
- 3. Coronagraph Layout
	- 1. Front End
	- 2. Relay 1
	- 3. Back End
	- 4. LOWFS
- 4. CGI Optical Subsystem
- 5. CGI Optical Subsystem Fully Aligned
- 6. CGI Optic Mechanisms & Cameras
- 7. Precision Alignment Mechanisms
- 8. Static Optics
- 9. OTA+TCA Polarization Performance
- 10. Optical Performance WFE
- 11. Stray Light Control
- 12. CFAM Baffle Stray Light Issue
- 13. Throughput

Interface to Observatory

- Collimated Beam
- Co-incident OTA+TCA exit pupil plane and CGI entrance pupil plane
- Key interface requirements:
	- ≤ 0.5 mm pupil shear
		- Not hard stop; TTFold mirror has greater range of motion
	- ≤ 1.5 asec on-the-sky boresight alignment tolerance
		- Not hard stop; OTA Entrance Aperture Plate (field stop) has reserve allocation
	- ≤ 1.31 mrad pupil clocking
		- No mechanism to compensate for clocking
		- Less sensitive to optic displacements

Coronagraph Instrument Design Requirements

August 26-27, 2024 CGI Test Results Info Session 5

CGI Optical Subsystem

August 26-27, 2024 CGI Test Results Info Session 6

CGI Optical Subsystem – Fully Aligned

*CFAM baffle not yet installed

August 26-27, 2024 CGI Test Results Info Session 7

Front End

- The CGI front-end (FSM through FPAM) is where the majority of coronagraphic "magic" occurs.
- Key components include:
	- Fast Steering Mirror (FSM) for pointing control
	- Focus Control Mirror (FCM) for focus compensation
	- Deformable mirrors (DM1 & DM2) for wavefront amplitude and phase control
	- Shaped pupil coronagraph masks on a precision alignment mechanism (PAM)
	- Focal plane masks (a.k.a. occulters) on a PAM
- Two OAP-pair relays produce two internal pupil planes.
- One OAP of the third relay produces the occulter focal plane and Low Order Wavefront Sensor pick-off

Relay 1

- The first OAP-pair relay produces an internal pupil plane for DM1. This DM performs phase correction of the wavefront.
- The FCM is located between the two OAPs such that piston of the mirror affects defocus with very little additional optical abberations.
- After reflecting from OAP1, the converging beam passes through the back-side of OAP2 by way of a through hole smaller than the central obscuration of the Roman telescope pupil.
- This allows the FCM surface normal to be parallel to the beam between the two OAPs.

- The first OAP-pair relay produces an internal pupil plane for DM1. This DM performs phase correction of the wavefront.
- The FCM is located between the two OAPs such that piston of the mirror affects defocus with very little additional optical abberations.
- After reflecting from OAP1, the converging beam passes through the back-side of OAP2 by way of a through hole smaller than the central obscuration of the Roman telescope pupil.
- This allows the FCM surface normal to be parallel to the beam between the two OAPs.
- *Note: the hole in OAP2 is 9mm diameter.*
	- It was a challenge to both accurately fabricate the OAP with a stepped hole in the center as well as aligning it within the relay.
	- It was especially challenging to displace OAP1 and OAP2 and the FCM to offset DM surface deformations under vacuum.

Back End

- The CGI Back-end (FPAM through EXCAM) provides additional coronagraphic support, color filters, and imaging modes.
- Key components include:
	- Lyot stop at a pupil plane
	- Field stops at a focal plane
	- Color filters
	- Imaging optics
- The third OAP-pair relay produces a third pupil plane for the Lyot stop.
- The fourth OAP-pair relay produces a focal plane for the field stops and a collimated beam for the color filters and image lenses.

LOWFS

- $A \lambda/4$ phase dimple on each FPAM occulter allows for Zernike wavefront sensing of the starlight reflected.
- This allows the Low Order Wavefront Sensor (LOWFS) to sense wavefront Zernikes from Z2 through Z11.
- LOWFS provides pointing feedback to the CGI internal Attitude Control System (ACS).
- LOWFS also provides wavefront sensing for active wavefront compensation using the DMs.
- Note the optical design of the LOWFS Optical Barrel Element (LOBE) had originally accommodated a separate optical path for a starshade sensor and therefore is a non-optimal pupil relay especially for fields further off-axis.

CGI Optic Mechanisms & Cameras

Fast Steering Mirror (FSM)

Focus Control Mirror (FCM)

Exoplanet Camera (EXCAM) (not shown) Low Order Wavefront Sensing Camera (LOCAM)

Deformable Mirrors (one shown)

Precision Alignment Mechanisms

Shaped Pupil Alignment Mechanism (SPAM)

Lyot Stop Alignment Mechanism (LSAM)

Color Filter Alignment Mechanism (CFAM)

Focal Plane Alignment Mechanism (FPAM)

August 26-27, 2024 CGI Test Results Info Session 14

Field Stop Alignment Mechanism (FSAM)

Direct Imaging and Polarization Alignment Mechanism (DPAM)

Static Optics

LOWFS Optical Barrel Element (LOBE)

August 26-27, 2024 CGI Test Results Info Session 15

With through hole

OTA+TCA Polarization Performance

 \mathbf{u}

 $\sqrt{2}$, $\sqrt{2}$

111 <u>i 1</u>11

- Polarization Retardance Analysis of OTA + TCA:
	- Optimal layout selected from a set of candidate options.

August 26-27, 2024 CGI Test Results Info Session 16

Optical Performance – WFE

- An unexpected amount of defocus (Z4) and astigmatism (Z6) was present on the deformable mirror surfaces during TVAC testing.
- Self-flattening the deformable mirrors with actuator stroke would require significant wavefront control capacity.
- It was decided to deliberately displace OAPs 1-4 and the FCM to offset about 70% of this deformation while under dry nitrogen purge.
- Post-wavefront flattening prior to EFC (PRNUM 266, includes back-end):
	- 74 +: 16.44 nm rms
	- $74 \cdot 10.3$ nm rms
	- $75 + 12.8$ nm rms
- Back-end WFE only (measured with pinhole at FPAM, full circular aperture):
	- Z4+: 22.40 nm rms
	- $74 \cdot 21.42$ nm rms
	- Z5+: 6.55 nm rms

- Pre-DM installation WFE:
	- Front-end Z5+ WFE: 16.95 nm rms
	- $-$ Front-end 74 WFF: 3.22 nm rms
	- Back-end Z4+ WFE: 24.1 nm rms
- Post-DM installation WFE (expected; DMs introduce wavefront aberrations):
	- $-$ Front-end $75+$ WFF: \sim 72 nm rms
	- Front-end 74 WFF: \sim 50 nm rms
	- Back-end Z4+ WFE: no change

- Stray light control is critical to a coronagraph.
- Methods include:
	- High quality optical surfaces
	- Color filters
	- Baffles (stand-alone and integrated)
	- Beam dumps
	- Bladed stray light guard at entrance
	- Light-tight MLI enclosure
	- Contamination control
- 2.73 photons/mm²/sec within the dark hole, verified by analysis
	- \cdot Includes MUF = 3,
	- MUF = 10 for radiation induced luminescence

August 26-27, 2024 CGI Test Results Info Session 18

CFAM Baffle Stray Light Issue

- A stray light leakage was found during TVAC.
- What occurred:
	- Out-of-band light diffracted into the field stop following EFC
	- This light bypassed the color filter and entered the dark hole.

Stray light leakage shown in a pupil image

- Cause:
	- 1. A design flaw in the color filter mount exposed a gap through which light could bypass the color filter.
	- 2. In addition, the original color filter baffle had been removed, after bench fabrication, to accommodate harnessing.
	- 3. Traditional stray light analysis had not modeled diffraction due to wavefront manipulation by EFC.
- Solution:
	- Model a diffracted beam at the field stop that overfills the color filter and determine the proper baffle aperture to ensure no gaps are illuminated.
	- Fabricate a new baffle aperture and re-install the baffle onto original interface to cover the gaps.

Back-lighting highlights gaps around color filters

August 26-27, 2024 CGI Test Results Info Session 19

Optical Throughput

- The optical throughput of the CGI is a combination of mirror reflectivity, optic transmission, and residual transmission after contamination loss.
- Coronagraph mirror coatings are all high reflectivity protected silver, with the exception of bare aluminum on the DMs. This is OK for CGI.
- The table to the right captures the throughput of each as-built optic for each observation waveband and LOWFS.
- For the threshold observing waveband (Band 1), the total estimated throughput 15 months after launch, is 51%.

The average contamination throughput loss, 15 months after launch, is 14.8% or 85.2% transmission.

The total average Band 1 throughput 15 months after launch is 85.2% * 60.4% = 51%