CGI Spectrometer/Polarimeter Design and Calibrations

Roman Coronagraph Instrument Test Results Info Session 8/26-27/2024

Tyler D. Groff ¹ Neil T. Zimmerman ¹ Evan Bray ¹ Michele Woodland ¹ Hari Subedi ¹ Caleb Baker ² Vanessa Bailey ² Sergi Hildebrandt ²

With Significant Hardware Contribution by JAXA Toru Yamada ³ Motohide Tamura ³

¹NASA GODDARD SPACE FLIGHT CENTER • ²JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY • L3HARRIS TECHNOLOGIES • BAE SYSTEMS • ELEDYNE • NASA KENNEDY SPACE CENTER • SPACE TELESCOPE SCIENCE INSTITUTE • IPAC • EUROPEAN SPACE AGENCY • ³JAPAN AEROSPACE EXPLORATION AGENCY • LAPOPATORIE D'ASTROPHYSIQUE DE MARSEIL E • CENTRE NATIONAL d'ÉTURES SPATIALES • MAY DI ANCK INSTITUTE FOR ASTRONOMY

SPACE TELESCOPE

NANCY GRACE

Introduction

DI Lens

- The Roman Coronagraph Instrument is a Class D Technology Demonstration for exoplanet direct imaging via coronagraphy
- Goddard delivered the final imaging modes in the Precision Alignment Mechanisms (PAMs)
 - Direct Imaging Lens for primary dark hole imaging mode
 - Two Wollaston prism modes for disk science applications
 - Two spectroscopy zero-deviation prisms for exoplanet slit spectroscopy
- Imaging and polarization optics generously contributed by JAXA

Spec/Pol assemblies

Spectroscopy and Polarization Modules for CGI

- Zero Optical Deviation (ZOD) prisms
 - 730nm Band 3
 - 660nm Band 2
- Wollaston Prism Assemblies
 - Vertically oriented (0 deg)
 - Diagonally oriented (45 deg)
- Direct Imaging (DI) Lens
- Calibration and spectral extraction algorithm
 - Required for centroiding and calibrating spectra on CGI
 - Not flight software

Baseline Filter Bands	Center	Cut-on	Cut-off	Bandwidth %
CGI Band 1 (Wollaston Prism)	575	546	604	10.1
CGI Band 2 (Spectroscopy Shaped Pupil)	660	610	710	15.2
CGI Band 3 (Spectroscopy Shaped Pupil)	730	675	785	15.1
CGI Band 4 (Wollaston Prism)	825	784	866	9.8

Spectroscopy with Roman Coronagraph

Alignment and Bonding Setup at GSFC

- Theodolite co-witnesses Interferometer beam through and around prism assembly
 - Dispersion directly verified with theodolite during alignment and bonding activities with extremely high fidelity
- WFE Verified in double-pass during alignment
- Flat reference used for prisms
- Spherical reference and CaliBall swapped into setup for interferometric lens alignment in double-pass
 - Focal lengths *well* within tolerance as a result

GSFC Performance Verification Lab Setup

Pre and Post Environments Wavefront Error

Example Tests and Calibrations at GSFC

Ground Calibration

- The spectroscopy mode has two instrument requirements to meet on-orbit performance
 - Tolerance on final instrument spectral resolution
 - Wavelength accuracy of the spectrum located anywhere in the SPC field of view
- Both requirements are dependent on as-built filter parameters, beam angle of incidence, slit format, and as-built pupil observed looking back from the final focal plane
- All subsystem level verifications and calibrations were done prior to delivery, but final instrument-level calibrations were required for final flight calibration
 - Interesting systems engineering side effect unique to pupil apodizing coronagraph:

Since it is designed specifically to block/apodize the entire telescope pupil it is possible do true spectral resolution verification activities at the instrument level that reflect on-orbit performance

Spectroscopy Tests in TVAC2

- Dispersion calibration with final flight pupil
- Calibrate narrowband filter transmission profile in-situ with wavelength scans using a laser line tunable filter
 - Narrowband filter knowledge critical to wavelength accuracy; since the slit and spectrum are deployable anywhere in the field the narrowband filter observation anchors the spectrum on detector

Filter Characterization Demonstration

- Wavelength accuracy requirement of 2-nm at instrument level
 - Requires careful dispersion calibration of prism
 - Since slit deploys to arbitrary field position, also requires extremely careful calibration of the narrowband filters in as-assembled instrument configuration
- Demonstration using flight reject filter prior to CGI I&T shows extremely precise calibration possible with designed test
 - Tunable filter scan in CGI simulator testbed
 - Compare to independent filter measurement with calibrated GSFC Bruker Fourier Transform Spectrograph in collimated light

Method	Center (nm)	Width (nm)	
CGIsim testbed	754.24 ± 0.01	7.19 ± 0.06	
Bruker (AOI=7°)	754.25	7.19	

Sub-band filter transmission curves

- Overlay of transmission curves inferred from TVAC data with manufacturer scans
- Narrowband filters 2C and 3E were highest priority for TVAC measurements, since they define the wavelength zeropoint of spectroscopic data taken during the tech demo.
- The other Band 3 sub-band filters will be used for HOWFS, and for confirming the prism dispersion scale an orientation in flight.

DNG 1012831 REQ: L4 OPT DESIGN - Spectral Resolution

- Band 3 dispersion
- Wavelengths measured: 10
- L7 Requirement: "The wavelength at which the Band 3 Prism assembly achieves a dispersion of 204 nm/mm shall be 730 +/- 5 nm"
 - Measured dispersion value: 730.09 ± 0.54 nm

DNG 1012831 REQ: L4 OPT DESIGN - Spectral Resolution

- Current best estimate of spectral resolution (R) based on Linespread Function (LSF) of the slitless PSF and the dispersion curve (previous chart).
 - R = wavelength / (FWHM of LSF))
 - Note CGI slits don't significantly impact the LSF
- L4 Requirement: Spectral resolution of R=50 at 730nm ± 10 nm in Band 3
 - Measured Resolution:
 724.4 ± 0.5nm
 - Similar results for Band 2 prism

Thanks

BACKUP

TV-40b "Wavelength Accuracy and Spectral Resolution" Test Summary

Test	Priority	Status	Results
Filter 3D scan	Tier 1	Completed	Transmission curve consistent w/ L4 req't
Filter 2C scan	Tier 1	Completed	Transmission curve consistent w/ L4 req't
Band 3 sub-band filter scans	Tier 2	Completed	Transmission filter profiles
			Dispersion curve plot consistent with L7
Band 3 Prism scan	Tier 1	Completed	req't (verified before at component level)
Band 2 Prism scan	Tier 2	Completed	Dispersion curve for Band 2
Prism + Slit spectral resolution w/ LLTF	Tier 2	1 of 2 slits (R1C2)	Slit misaligned with PSF
Prism + Slit spectral resolution w/ SELECT	Tier 3	Not attempted	-
Band 2 sub-band filter scans	Tier 3	Not attempted	-

ZOD Assembly Optomechanical Design

Overview:

- There are two variants ZOD 660 and ZOD 730
- Lenses and prisms have just 10 mm diameter
- Design is composed of an prism tube (1), three prisms (2,3,4), two lenses (5,6), and a lens tube (7)

ZOD 660/730 EDU's fully assembled

Testing and Verification at GSFC

• DI Lens

- 7 key and driving requirements
 - 1 verified by analysis
- 24 total requirements
 - 2 verified by analysis
- No non-compliance
- Spectroscopy modes
 - 12 key and driving requirements
 - 1 verified by analysis
 - 25 total requirements
 - 3 Number verified by analysis
 - No non-compliance

Wollaston modes

- 12 key and driving requirements
 - 1 verified by analysis
- 28 total requirements
 - 3 verified by analysis
- No non-compliance

DNG 1012834 REQ: L4 OPT DESIGN - Narrow-band Filters for Spectroscopy

- Narrowband Filter 3D (Center: 754nm)
- Wavelengths measured: 25
 748-760nm
- Filter Center: 753.8 nm ± 0.5 nm
- Filter Width: 7.1 nm ± 0.2 nm
- Requirement: Filter center must be 754 ± 2 nm
 - Satisfied

DNG 1012834 REQ: L4 OPT DESIGN - Narrow-band Filters for Spectroscopy

- Narrowband Filter 2C
- Wavelengths measured: 25
 650-662 nm
- Filter Center: 655.7 nm ± 0.5 nm
- Filter Width: 6.3 ± 0.2 nm
- Requirement: Filter center must be 656.3 +/- 1.5 nm
 - Satisfied

DNG 1012831 REQ: L4 OPT DESIGN - Spectral Resolution

Slice through middle of P

- Example comparisons of TVAC images (left column) and model images (right column) of the prism-dispersed PSF, through different sub-band filters.
- Measured PSF FWHM values are 1-3% higher, this may explain part of the offset between predicted and measured spectral resolution.

200 microns